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Summary. A multi-reference CI scheme is proposed which is aiming at a consi- 
derable reduction of the generally very large number of configurations of CI 
expansions in multi-configuration reference cases. This reduction is achieved by 
combining the idea of internal contraction, the c01~cept of pair natural orbitals 
(PNO's) and CEPA (coupled electron pair) type approximations for the contribu- 
tions of higher than double excitations. This latter estimate leads to size consistent 
results and also permits to employ reference wavefunctions that contain only the 
dominantly occupied configurations of the considered system. Applications to two 
test cases, the lowest states (3p, 1D and 1S) of the carbon atom and the symmetry 
forbidden C2~ insertion reaction of Be and H2, show that our method is able to 
truncate CI expansions to lengths of no more than 103-104 without losing more 
than 1-2% of the correlation energy. The calculated excitation energies and energy 
barriers agree with the full CI results in the respective basis within about 
1 kcal/mol. Thus the MC-CEPA-PNO method presents a very efficient way to 
obtain "chemical accuracy" in CI-calculations for molecular systems. 

Key words: Coupled electron pair approximation (CEPA) - Multi-reference con- 
figuration interaction - Pair natural orbitals (PNOs) 

1 Introduction 

Electron correlation can be divided into non-dynamic correlation (attributable to 
degeneracies, quasi-degeneracies, curve crossings etc.) and dynamic correlation. 
The former is generally taken care of by a multi-configuration-SCF (MCSCF) 
wavefunction - in most cases the Complete Active Space SCF (CASSCF) is used - 
with a comparatively short expansion length, If one wants to incorporate dynamic 
correlation effects on top of a CASSCF calculation by means of a CI-type 
expansion in terms of virtual SCF orbitals, the number of configurations becomes 
extremely large (often 105-107), in particular if one is aiming at size-consistent 
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results and is forced to include also higher than double excitations. The progress of 
modern computer technology as well as the development of efficient quantum 
chemical program codes has made CI-calculations with expansion lengths in the order 
of 106 to 107 feasible, and even longer expansion lengths up to 109 seem possible. 

In this paper we present an alternative approach. By using a) the idea of internal 
contraction [1, 2, 3], b) pair natural orbitals (PNO's) for all single and double 
excitations into the virtual space [4, 5, 2] and c) a CEPA-type approximation to 
the full coupled cluster equations [6, 7] (which avoids the explicit inclusion of 
higher than double excitations) we can truncate the CI-expansion length to no 
more than 103-104 configurations even for multi-configuration reference 
wavefunctions without losing more than about 1-2% of the total correlation 
energy. (We prefer to interpret the abbreviation PNO as "pair natural orbital" 
instead of the original term "pseudo-natural orbital" I-8, 2, 6] since the latter is 
much less specific.) 

The present approach is a generalization of the PNO-CEPA single-reference 
method originally proposed by Meyer [9, 6]. It is partly based on the programs of 
Ahlrichs et al. [10] for the closed-shell case and Staemmler and Jaquet [11] for the 
single-reference open-shell case. The determination of the PNO's follows closely 
the method given in [5], while the construction of the CI matrix elements uses 
a semidirect way. 

A PNO expansion of multi-configuration reference CI wavefunctions has 
already been described by Taylor [12]. Contrary to our semidirect, internally 
contracted approach, Taylor presented an indirect, uncontracted method that 
necessitates to setup the complete CI-matrix between all configurations that have 
nonvanishing interaction matrix elements with any reference configuration. The 
advantage of our method is the reduced effort in four index transformation steps 
and a further decrease of the number of configurations that have to be considered, 
but our configurations have a more complicated structure than those in Taylor's 
approach. 

2 Outline of the method 

2.1 Excitation operators 

We want to solve the N-electron Schr6dinger equation: 

BI~')  = e l ~ ) ,  (1) 

where the wavefunction ~v describes one specific state of the molecule under 
consideration. We start from a multi-reference wavefunction ~go which has been 
obtained e.g. by a CASSCF calculation. Such a wavefunction is generally size 
consistent as is a RHF-wavefunction, but this is not a necessary condition for our 
method. 

A fully correlated size consistent wavefunction can be generated from ~o by 
means of the exponential ansatz first proposed by Coester and Kfimmel [13, 14, 15]: 

i i , j  
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Generally the/~i are the excitation operators which generate singly, doubly, triply 
etc. excited configurations. In the following we will restrict our treatment to 
/~roperators describing single and double excitations. 

They are constructed as follows: We start from the usual creation and annihila- 
tion operators try, ~/p and ~fv, f/v for spin orbitals ~0p, q3v and build spin-free primitive 
excitation operators (indicated by the lower case letter #): 

1 
#vq - ~ + 6vq) (r/tpr/q + #~/q) (4) 

~2 1 (1 + 6~,)(1 + 6qs) 
#~," = (1 + ap~) (1 + ~ r ~ )  2 (~*#'~" + ~ & ~ " )  (5) 

for single and double excitations. Instead of the #p~,~ of Eq. (5) for the doubles, we 
generally use spin-adapted operators for singlet double excitations: 

^s = 1 + 6v~6q~ 
evq'"~ (1 + 5,,)(1 + 6q,)(#pq,,s + #,q,v,), (6) 

and triplet double excitations: 

2 ^T 
ev,..s = w /~  (0, , . . .  - #~,. v.) (7) 

[7, 16]. 
For single-configuration closed-shell reference wavefunctions 7/o, only oper- 

ators #p~ with p occupied and q virtual and #pq, r~ with q ~< s occupied and p, r virtual 
are needed to generate all possible singly and doubly excited configurations. 
Furthermore, the excited configurations are orthogonal to each other and nor- 
malized, i.e. 

~, = E ~ o  (8) 

<7~,1~> = 6,j (9) 

/~ and/~j being any of the operators of Eqs. (4) and (5). This means, the primitive 
#-operators form already an orthonormal, and in particular linear independent set 
of excitation operators and need not be further modified. 

For multi-configuration reference wavefunctions, one needs single excitations 
from inactive to active, inactive to virtual and active to virtual orbitals (all of them 
satisfying Brillouin's theorem if one starts from a CASSCF reference wavefunction 
71o) and double excitations of internal, semiinternal and external nature [17, 7]. 
The configurations generated by the application of the corresponding primitive 
#-operators (4, 5) to 7/o are generally no longer orthonormal nor linear indepen- 
dent. For instance, excitations from different active orbitals into the space of the 
virtual orbitals might lead to the same excited configuration. We generate an 
orthonormal set of independent excitation operators E~ (uppercase letters) satisfy- 
ing Eq. (9) by a L6wdin orthogonalization of the primitive d operators, i.e. by 
diagonalizing the overlap matrix: 

Sij = (#,~eol#j~eo) (10) 

and discarding all linear combinations belonging to eigenvalues of S below a given 
threshold. 
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The Lrwdin orthogonalization of the primitive ~ operators has been chosen 
to ensure that the final set of orthogonal E operators is independent of the more 
or less arbitrary order of the d operators before orthogonalization. Of course, since 
orbitals belonging to different subspaces (inactive, active, virtual) are already 
orthogonal to each other, configurations d~TJo with different numbers of 
electrons in these different subspaces are orthogonal, and the overlap matrix (10) 
consists of several rather small blocks. On the other hand, the use of pair natural 
orbitals and the MCCEPA or ACPF approximations for the higher excited 
configurations has the consequence that the final correlation energy is not 
completely independent of the way of orthogonalizing the primitive O operators. 
In particular, the size consistency of our approach is slightly violated in cases 
in which a molecule dissociates in two subsystems each of which contains unpaired 
electrons. 

In the case of semiinternal double excitations, we first generate the correspond- 
ing singly excited configurations - i.e. those which are coupled to 7J0 by a one- 
electron matrix element - by the application of Opq. In the second step, the full set of 
singles and doubles is generated and Schmidt orthogonalized to the singles. By this 
procedure, we are able to clearly distinguish between singles and semiinternal 
doubles. If we start from a CASSCF reference wavefunction 7~o, the Brillouin 
conditions are satisfied and the singles do not contribute in second order to the 
energy. However, this is no prerequisite of our method; a multi-configuration 
wavefunction 71o without variationally optimized orbitals can as well be used as 
reference. 

Our way of generating singly and doubly excited configurations corresponds 
exactly to the "internal contraction" used by Werner and coworkers [3, 16] and 
first proposed by Meyer [2] in the context of spin-adapted excitation operators. By 
this procedure one obtains the "direct interacting space" [1], i.e. the full set of those 
excited configurations coupled directly to 7J0 by one- or two-electron matrix 
elements. Just this set of configurations has also been incorporated in our previous 
programs for closed-shell [10] and simple open-shell [1 1] cases. Our experience as 
well as that of Werner and of many other authors for multi-reference wavefunctions 
has shown that this choice yields excellent results even with comparatively small CI 
expansion lengths. 

2.2 MCCEPA equations 

The ansatz (3) together with the orthognormality relation of Eq. (9) implies the 
intermediate normalization: 

<~'o1~'> = 1. (11) 

If we insert the ansatz (3) into the Schr6dinger equation (1) and project with ~o 
we get: 

<%lHl~e> = <~olE[~> = E (12) 
or written explicitly: 

E = <tPolHl(l + ~ciff~i + ½~cicjff~iff~j + . . .)~o>. (13) 
• i,j 

If one is allowed to neglect all terms beyond those linear in the coefficients c~, the 
total energy can be written as: 
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with 

= <~ol/~1~o> -4- ~ , c i < % l / ~ l g ~ % >  
i 

= Eo + ~ z i  
i 

(14) 

t o  = <eol/~l~'o> (15) 
^ ^ 

~, = ci < tt'olHl Ei Wo >. (16) 

In the case of a closed-shell single reference SCF wavefunction 7'0 the neglect of 
higher order terms in Eq. (13) is a good approximation since a) singly excited 
configurations satisfy the Brillouin theorem such that products of coefficients cicj 
are very small and b) the products of doubly excited configurations are quadruply 
excited and do not interact with 7'0- For more general reference wavefunctions 7'0, 
the neglect of the nonlinear terms in Eq. (13) is less justified, the approximation thus 
introduced depends on the choice of the excitation operators Ei. Nevertheless, we 
neglect these terms as we avoid to treat higher than double excitations explicitly in 
our approximation. 

The equations for the determination of the coefficients (or amplitudes) cl in 
Eq. (3) are obtained by projecting the Schr6dinger equation with the excited 
configuration ~ = E~o: 

</~e~olHl~> = </~olEl~> = E</~ol~>.  (17) 

Inserting the explicit form of Eq. (3) and shifting all nonlinear terms to the r.h.s. 
one gets: 

< JE i llCo ] l~ , ( l 4- Z c j g j t llJo ) -= E ( E i ~tCo , ( l + L c j iE j -b ½ L C j C k E~ E k -b . . . ) ~[Jo ) 
j / j j , k  

~ ~CjCkEjEk +" • • ~o >. (18) 
\ j , k  

The 1.h.s. contains only linear terms, i.e. those terms that are needed for a conven- 
tional SD-CI (singles and doubles CI) on top of 7/o. The r.h.s, contains all 
additional nonlinear terms. 

The full solution of Eq. (18) without any approximation corresponds to the full 
MC-coupled cluster method and requires the inclusion of all nonlinear terms and 
the evaluation of the corresponding matrix elements. We construct an approximate 
solution with the following assumptions: 

i) We first neglect all nonlinear terms in the first part of the r.h.s, of Eq. (18). This 
leads to: 

= ciE (19) 

ciEo -4- c i ~  ca< ~o l~ l~ j% > 
J 
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because of the orthogonality of Eq. (9) of the excited configurations. In the last 
step the approximation of Eq. (14) was used. 

ii) We take only the bilinear term in the second part of the r.h.s, of Eq. (18). These 
terms contain many complicated matrix elements. The most important of them 
are those in which one of the indices j or k is equal to i I-7]. If we neglect all other 
contributions to the double sum we get: 

+ c, z + 
j (  # i )  

1 cj(ff~jff~i +/~f/~j)%>. (21) 

After these two simplifications Eq. (18) for the amplitudes c~ reads: 

-½(1 + c~,j)-x(<~'oP/~lg~j~o> + <~%l~qlE~g,%>)] t.  

Now, many terms in the square bracket on the r.h.s, of Eq. (22) cancel exactly or to 
alarge extent and need not be calculated or may be approximated. In particular, if 
E~ and E~ are disjoint excitations - from different occupied orbitals into different 
virtual orbitals - one has: 

<%IHIE'j%> = </~%1/~1/~,/~%> = </~%lnl/~/~i~/'o> (23) 

and the corresponding contributions in Eq. (22) vanish. 
Of course, because of the Pauli principle one has: 

^ ^ 

[E~E~%> = 0 (24) 

if /~ describes a double excitation from a doubly occupied orbital. In the majority 
of cases, one observes: 

I<%IHIE~%>[/> I</~,%IHI/~/~j%>I (25) 

since the excitation opera tors /~  and/~j  can contain excitations from the same 
occupied orbitals and/or into the same virtual orbitals which because of Eq. (24) 
will render the norm of IE~Ej%> smaller than 1. Excitations of this type occur 
already in the closed-shell case, but are more frequent and more complicated in 
MC-reference cases. 

After some experimentation we found that: 

<E,~'olalE, Ej%> ~ <%lttlE'~%><ff~,E'~olff~,E'~%> (26) 

and 

<~,%1/t1/~j~%> "~ <%lffl~fl'o><E~E~%lE~g~%> (27) 

are the best approximations to the matrix elements which are needed in addition to 
those already calculated for the SD-CI (1.h.s. of Eq. (18)). Equations (26) and (27) are 
obvious consistent with the inequality of Eq. (25) and contain Eqs. (23) and (24) as 
special cases. For the closed-shell case it is easy to verify that Eqs. (26) and (27) are 
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correct for all double excitations but become approximations as soon as single 
excitations are included. Since in Eqs. (26) and (27) only normalization integrals 
have to be calculated the additional effort beyond that already necessary for the 
SD-CI is very small. 

Using Eqs. (26) and (27) we obtain our final equation for the MCCEPA 
amplitudes ci: 

(ff~iTtolI~l(l+~c~ff~j)Tto>=ci[Eo+~ejd~il (28, 

with 

dig = 1 - ½(1 + 60-1((/~i/~j%l/~i/~j~o) + (/~j/~i~ol/~j/~i~o)) (29) 

where apparently the "CEPA corrections" dij do not depend on the ampli- 
tudes ci. 

The MCCEPA coefficients dij may become negative as the norm of EiEj~o can 
become greater than one if Ej describes an excitation in partially filled orbitals and 
/~i an excitation out of these orbitals. As these negative coefficients spoil the 
convergence of the CI-iterations and as these coefficients are approximate anyway 
we set them to zero in this case. 

Of course, the MCCEPA Eqs. (28) and (29) constitute only an approximation to 
the full multi-reference coupled cluster equations, the effect of the different approx- 
imations (e.g. Eqs. (25), (26) and (27))cannot be easily estimated. They are essenti- 
ally the same as those used in single-reference CEPA schemes and their accuracy 
can only be judged in comparison with SD-CI and full CI calculations. 

2.3 Size consistency and connection with other CEPA variants 

Several different approximate coupled cluster schemes have been proposed in the 
literature for the closed-shell (for reviews see [-7, 18]) or simple open-shell cases 
[9, 11], but in recent years also for multi-reference cases [19, 20, 21, 22]. In all of 
them it is tried to simplify the full coupled cluster equations (18) using approxima- 
tions that do not violate the size-consistency. 

The conventional CI with singles and doubles on top of the MC reference 
(SD-CI) is obtained if one truncates the ansatz (3) after the linear terms. In this case, 
the r.h.s, of Eqs. (18), (22) and (28) simply read ciE, E being the total energy, and 
the cancellation between the two terms on the r.h.s, of Eq. (18) cannot occur since 
the second term containing the bilinear contributions has not been included at all. 
The SD-CI wavefunction is not size consistent, neither in the single-reference nor in 
the multi-reference case. 

The simplest approximation to the full coupled cluster equation is the one 
called CEPA-0 [18, 23] or linearized Coupled Cluster approximation (LCCA) [24]. 
One starts from Eq. (22), allows for all cancellations derived from Eq. (23) in order 
to preserve the size consistency and neglects all further matrix elements on the r.h.s. 
of Eq. (22) which survive. This leads to Eq. (28) with: 

dlj = 0. (30) 

The CEPA-0 scheme is certainly size consistent, but generally overestimates cor- 
relation energies, since too many coupling elements are neglected. 
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The CEPA-2 approximation originally proposed by Meyer [6] and applied in 
our single-reference CEPA program [10, 11] is also a special case of Eq. (28) if one 
chooses: 

d~j = 6~ i, (31) 

where i andj refer now to pairs, i.e. to the sum of all excitations from a given pair of 
occupied orbitals into the virtual space. This recipe could not be generalized to the 
multi-reference case since the definition and identification of electron pairs is 
hardly possible in multi-reference cases, in particular not for excitations from the 
active space. 

Our cluster correction of Eq. (29) is closely related to the formulae proposed by 
Kelly and Sessler [25, 26], for a single-determinant closed-shell reference wave- 
function the two approximations are identical. 

The most widely used cluster correction for multi-reference wavefunctions is the 
pragmatic ACPF approach of Gdanitz and Ahlrichs 1-23]. This uses an energy 
functional: 

<(1 + c ,£ , )  - Eo[(1 + 
Fc = i i (32) 

2 e 

where the sum S~ contains all internal excitations, i.e. those with the same 
occupation of the orbitals outside the active space, and S~ contains all remaining 
excitations. It is well known that this approach is nearly size consistent and yields 
correlation energies which are rather close to the full CI results. 

To enable comparisons of different correlation methods, we included the 
(PNO-)CI, ACPF and CEPA-0 variants in our MCCEPA program. A comprehen- 
sive presentation of the results of these methods is given in the third section of 
this article. 

2.4 Computational details 

For all external and semiinternal excitations pair natural orbitals (PNO's) [-2] have 
been used in order to reduce the CI expansion length. The most dramatic reduction 
is achieved by a truncation of the PNO expansion for each individual pair after 
a given threshold, for instance 10 -7 H. In particular, the expansion lengths for 
weakly occupied pairs, those with small coefficients in the reference wavefunction, 
are very short. 

The calculation of the off-diagonal CI matrix elements follows a semidirect 
strategy: The rather complicated matrix elements between configurations belong- 
ing to different pairs - i.e. excitations/~i and/~j from different pairs of occupied 
orbitals - which involve non-orthogonal PNO's are performed once and stored on 
peripheral storage after the determination of the PNO's and before the CI iter- 
ations. Since the total number of configurations is comparatively small (103-104 ) 
the storage of the CI matrix requires generally no more peripheral storage than the 
two-electron integrals. The matrix elements between external configurations be- 
longing to the same pair which need two-electron integrals with four external 
indices are constructed directly as proposed by Ahlrichs and Driessler [5] and 
Meyer and coworkers [27, 28]: Instead of calculating and storing the necessary 
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K-operators over PNO's q~, before the CI iterations they are recalculated in each 
iteration n for the total density from the original atomic integrals. This can be 
written schematically as: 

~ c(an) Ka = ~Ctam K(Da) = K(~a CCan) a (33) 

where D denotes the density for which K is evaluated. Similarly also non-diagonal 
matrix elements that include three external indices can be evaluated as shown e.g. 
in [3]. In order to accelerate the convergence behaviour of the CI iterations Pulay's 
DIIS method [29, 30] is applied. 

Since the determination of the PNO's is a rather fast step, the most time- 
consuming parts of the whole program are a) the calculation of the parts of the 
CI-matrix with up to two external indices which is approximately proportional to 
N a'N 3"N2c csr but has to be performed only once and b) the calculation of the 

4 2 CI-matrix parts with 3 and 4 external indices which goes as N .No and has to be 
performed in every iteration (N being the number of functions, N~ the number of 
occupied orbitals to be correlated and Ncsr the number of configurations in the 
reference). The factor in front of nr3.nr3.nr2 . . . .  ~ l,csv depends also on the ratio of the 
average number of PNO's per pair (N~p%o) and N. Of course the time necessary for 
the evaluation of the off-diagonal CI-blocks increases rapidly with the number of 
the configurations in the reference; however it turned out that one can neglect 
configurations with coefficients smaller than about 0.05-0.08 from the reference 
without loosing a significant amount of accuracy. In this way, Ncsv can be kept 
very small in most cases. 

As an alternative to the direct calculation of the CI-matrix parts with 3 and 
4 external indices in every iteration, they could be calculated once and processed 
like the rest of the CI-matrix as has been done in most prior applications of PNO's 
[6, 10, 2, 11, 12]. However, this needs Nav~co'N4"NZc computational steps and is thus 
preferable only if N~v~o is smaller than the number of CI iterations. Typically for 
small molecules with N ~ 100 we need less than 10 iterations to reach converged 
energies, whereas Nav~o uses to be 20-30. Nevertheless, a construction and 
diagonalization of the full CI matrix can be advisable for excited states in order to 
guarantee the orthogonality to lower states of the same symmetry. Similar argu- 
ments apply to extended systems where many double excitations (those from 
remote orbitals) can be described with only a few PNO's. For such cases it is most 
efficient to use a hybrid of the two alternatives by constructing all CI-matrix 
elements for double excitations with few PNO's and using the semidirect method 
for the others. 

3 Results of  test calculations 

We have checked the accuracy of our MCCEPA-method by performing test 
calculations that span the typical domain of MR-CI applications: Accurate calcu- 
lation of excitation energies and the proper description of potential energy surfaces 
in regions where bond breaking and/or bond forming occurs. We have chosen one 
example of each of these applications: The three lowest electronic states (3p, 1D and 
1S) of the carbon atom and the C2v insertion reaction of Be and H a [19]. 

Since the two main approximations in our method are the CEPA-type treat- 
ment of the unlinked cluster contributions and the use of PNO's, the aim of the 
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present test calculations is to check how large the corresponding errors in the total 
correlation energy are and how they depend on the size of the basis set and the 
choice of the reference wavefunction ~o. 

The quality of the MCCEPA approximation was tested by comparison with full 
CI in the same basis set. PNO-CI (i.e. SD-CI using PNO's instead of virtual 
orbitals), ACPF and CEPA-0 calculations were performed, and for some states also 
single-reference CEPA-2 calculations [11], but the latter results are not 
documented here. This comparison yields an idea of how much of the correlation 
energy which is missing after SD-CI is covered by the different approximations to 
full CI. 

The effect of using PNO's is tested by performing conventional SD-CI 
calculations (with virtual orbitals) and comparing these results with our 
PNO-CI energies. As the amount of correlation energy that is lost due to the 
PNO expansion is only in the magnitude of a few percent we assume that it 
does not change very much when another correlation method instead of SD-CI 
is employed. Therefore we corrected for the PNO errors of the MCCEPA, 
ACPF and CEPA-0 method by adding the PNO-CI errors to the corresponding 
energies. 

3.1 The 3p, 1D and 1S states of the carbon atom 

We have chosen this example for our first test calculations as it allows a rigorous 
treatment with rather large basis sets even at the full CI level. On the other hand, 
we can as well compare the calculated excitation energies directly with experiment 
in order to check whether chemical accuracy ( ~ 1 kcal/mol) can be reached. Thus 
this system can serve both as a model system and a real system. 

The three lowest states of C show several typical features which are 
often encountered in the treatment of excited states: States of different spin 
multiplicity or of different electronic structure (closed shell versus open shell) 
have to be treated with the same accuracy. The near degeneracy of the 2s and 
2p orbitals might require different reference wavefunctions for different states. 
The energies of the states might be affected differently by the improvement of the 
basis set. 

The three states of C considered here can be described in first order starting 
from a ls22s22p 2 reference configuration. Due to the 2s, 2p near degeneracy the 
lsa2p 4 configuration is expected to have a rather small excitation energy and it 
might be necessary to include it into the reference wavefunction. Therefore, our 
calculations for the three states have been performed both starting from the 
ls22s22p 2 configuration (small reference) and lsZ2s22p 2 + ls22p 4 (big reference). In 
all calculations the reference wavefunctions ~Po were CASSCF wavefunctions for 
the respective state. 

We used cartesian Gaussian basis functions with exponents taken from 
Huzinaga's tables [31]. We took the 7s3p, 9s5p and 1 ls7p basis sets contracted to 
4s2p, 6s3p and 8s4p, respectively. These basis sets will be denoted by DZ, TZ and 
QZ. The exponents of the polarization functions were taken from Dunning [32]. 
Only pure d, f a n d  g components of the corresponding polarization functions were 
included in the basis set. 

Table 1 shows the calculated correlation energies of the different states com- 
pared to full CI energies. In all cases the deviations of the different methods from 
full CI decrease when the reference wavefunction is enlarged from the small to the 
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big reference space. This is especially true for the aS state where the lsZ2p 4 
configuration has a weight of about 8% in the reference wavefunction and is 
responsible for about 63 mH of the correlation energy which is approxi- 
mately half of the correlation energy of this state With the small reference. 
For  the aD and 3p states these weights amount  to only about 2% and 19 mH 
which is about 20% of the corresponding small reference correlation energy. 
Obviously the small reference is no more acceptable for the 1S state whereas 
it is a reasonable choice for the two other states. This is reflected by the 
PNO-errors  and also by the deviations of the MCCEPA and CEPA-0 methods 
from full CI. 

The calculated energies (Table 1) show the typical behaviour of the different 
correlation approximations. SD-CI consistently yields too low correlation 
energies since higher excitations are completely missing. CEPA-0 overestimates 
the correlation energy by about the same amount by which CI underestimates it 
as long as reasonable reference functions are chosen. Whenever the reference 
function is too small (small reference for iS) CEPA-0 yields unreliable low 
energies. 

The ACPF and MCCEPA energies are much closer to the full CI results. 
Whereas ACPF has a tendency to overestimate the cluster corrections MCCEPA 
generally underestimates them. In most cases ACPF seems to be in slightly better 
agreement with full CI than MCCEPA. This is especially true for the aS state with 
the small reference wavefunction. But this might be an artifact due to the large 
PNO error in this case. We have also performed some calculations with the old 
CEPA-2 version for comparisons, the results were in between MCCEPA and 
CEPA-0, also overestimating the cluster corrections. 

The PNO errors are generally below 1 mH, i.e. between 0.5 and 1.5% of the 
respective correlation energies. Table 1 shows that they increase with increasing 
basis set, but are very similar for the three states. The only exception is the aS state 
with the small reference, where the PNO errors are as large as 3-5%. (It should be 
noted that we have slightly overestimated the PNO  errors since the configuration 
space in the CI program is slightly larger than that in our current MCCEPA 
program that was used for calculating the PNO-CI  energies.) We can conclude that 
the loss in energy due to the use of PNO's  is in the order of 1% [5] provided that 
the reference function is chosen reasonably. 

In Table 2 we present the calculated term energies for the 1/) and aS states of 
the C-atom. Obviously the deviations from the full CI results are quite large 
and unsystematic for the CASSCF reference wavefunction, but considerably 
improved for all four methods of including correlation effects. There seems to be 
no substantial difference in the accuracy between the four methods, but the 
MCCEPA results show the most consistent behaviour. Again, the 1S state is 
quite poorly described with the small reference. Since the PNO errors are 
similar for these states, they cancel to a large extent for the energy 
differences. 

For  all basis sets except for the largest one (QZ3D2FIG) the errors in our 
approximations (MCCEPA, PNO's) are considerably smaller than the errors due 
to the limited basis. That means that for MCCEPA-PNO calculations on medium- 
sized molecular systems with typical basis sets of say TZ2D1F quality the atomic 
basis is still the source of the largest errors in a MCCEPA treatment. On the other 
hand, if we reach "chemical accuracy" of 1 kcal/mol ,~ 350 cm-  a with our largest 
basis set, about half of this error has to be attributed to the MCCEPA and PNO 
approximations. 
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3.2 Be + Hz reaction 

The C2v reaction of Be and H2 has been introduced by Purvis and Bartlett [33] 
and used by many other authors 1-19, 20, 21, 23] as a benchmark test for 
multi-configuration correlation methods. It represents the simplest prototype 
of a symmetry forbidden insertion reaction; the dominant electronic configur- 
ation being 2aZ~3a~ for the reactants Be + H2 and 2a~lbZ~ for the product Bell2. 

Our test calculations have been performed with a reference wavefunction 
go containing just these two configurations and the same basis set as employed by 
Purvis and Bartlett 1-33]. In addition to the three geometries (G1, G2 and G3) in the 
vicinity of the transition state that were proposed in the literature we also con- 
sidered two reasonable geometries for the reactants Be + H2 and the product 
(linear symmetric Bell1). 

Table 3 shows that the behaviour of the different correlation methods follows 
more or less the same pattern as for the lowest states of the C-atom: SCF and 
CASSCF have rather large errors and considerably overestimate the barrier. 
SD-CI does not include enough correlation while CEPA-0 overestimates it, thus 
SD-CI yields a still too high barrier and CEPA-0 a too low barrier (compared to 
full CI). Again the ACPF and MCCEPA results are rather close to full CI with 
MCCEPA slightly more consistent than ACPF. The PNO error amounts to 1-2% 
of the total correlation energy, this comparatively large error can be further 

T a b l e  3. Be + H 2 C2v insertion: Full  CI  results and  devia t ions  f rom it 

P roduc t s  G 1 G 2  G3  Reac tan ts  

rBe-n2 0.00 2.50 2.75 3.00 

rH-n  5.10 2.78 2.55 2.32 

SCF 37.26 59.88 81.29 88.28 

C A S S C F  36.97 53.00 63.95 66.44 

Full CI  - 15.779044 - 15.622599 - 15.602591 - 15.624731 

SD-C I  0.56 0.79 1.90 3.01 

M C C E P A  0.29 0.20 0.15 0.54 

A C P F  0.11 - 0.59 - 0.56 - 0.03 

C E P A - 0  - 0.51 - 2.45 5.78 ~ - 4.47 

P N O - e r r o r  - 0.21 - 1.35 - 1.23 - 0.96 

SCF 60.20 80.23 88.49 d 

M C S C F  53.31 64.35 66.68 d 

M R S D C I  0.78 1.91 3.05 d 

M R C E P A  - 1.68 - 2.55 - 5.88 a 

M R A C P F  - 0.90 - 0.90 - 0.53 e 

M R L C C M  - 2.62 - 2.40 - 5.50 f 

100.00 a 

1 . 4 0  a 

64.99 b 

49.97 

- 15.762848 

1.58 

-- 0.02 

- 0.00 

- 1.91 

- 0.05 

" I n  a . u .  

b This  work.  Energy  difference to full CI  in m H .  The  energies differ slightly f rom those given in the 

l i tera ture  [33]  since in our  calculat ions Gauss i an  lobe funct ions have  been employed  instead of 

car tes ian  Gauss ians .  

Saddle poin t  with respect  to va r ia t ion  of  7 ~ c o m p a r e  to Ref. [23] (Table  1, footnote~). 
d Ref. [20] 

e Ref. [23] 

f Ref. [19] 
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reduced if a larger reference wavefunction is used. The results of other authors, 
which are included for comparison confirm our observations. It should be noted 
that both the MRLCCM method of Laidig and Bartlett [19] and the MRCEPA 
method of Ruttink et al. [20] correspond to the CEPA-0 approximation. 

4 Conclusions 

The test calculations presented in the previous section show that our MC-CEPA- 
PNO method is a simple and efficient way to achieve chemical accuracy in 
multi-reference CI calculations for molecular systems. We obtained similar results 
for several larger systems that have been investigated recently, e.g. excited states of 
N 2+ [34], F 3+ [35], O~- [36] and NiO 1°- [37], potential energy surfaces for the 
reaction of NO with a Ni-cluster [38], of FNO [39] and BrHO [40] and magnetic 
properties of oxygen-bridged transition-metal complexes [41]. The main reasons 
are: 

i) The MCCEPA and the ACPF estimates of the cluster corrections lead to 
energies which are very close to the full CI limits and in all cases much superior 
to the MC-SD-CI results (underestimating the true correlation energy) and 
CEPA-0 results (overestimating it). The additional numerical effort (i.e. beyond 
MC-SD-CI) for obtaining these estimates are small (MCCEPA) or even negli- 
gible (ACPF). Furthermore, the MCCEPA and ACPF results are quite reliable 
even for a comparatively small reference wavefunction. 

ii) The use of pair natural orbitals reduces the CI expansion length. The corres- 
ponding loss in correlation energy amounts to about 1%, depending on the 
size of the reference space and the basis set. 

iii) The semidirect way of constructing off-diagonal CI matrix elements and 
the short CI expansion length enable the use of the MC-CEPA-PNO 
program on small workstations even for rather large basis sets (150-200 
basis functions). A small version of the program can already be used on a 
MICRO-VAX or PC. 
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